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ABSTRACT

Integral transforms are used to solve singular initial value

problems for Stokes' slow-motion equations. The method is applied

to investigate the decaying process of straight and circular dis-

continuity lines as well as the dissipation of local disturbances

in an infinite medium. A criterion for the occurrence of secondary

vortices is derived. Numerical results are displayed for periodic

initial disturbances which demonstrate graphically the spreading

of the disturbance from a discontinuity line into the fluid under

successive development and decay of secondary vortices. A more

detailed sequence of dissipating vortices is evaluated numerically

and displayed by streamline patterns in connection with Lamb's

vortical eigenmotions in an infinitely long cylinder of finite

radius.
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1. Introduction

In a recent paper [1] complete systems of time-dependent sepa-

rable solutions of Stokes' slow-motion equations have been constructed

for rectangular and annular flow regions. This was achieved by means

of a generalized separation technique introduced in [2, 3]. In addi-

tion, so-called associated separable solutions have been found by

differentiating or integrating separable solutions with respect to

an integration parameter. Their significance for the construction

of certain solutions of the complete Navier-Stokes equations has

been pointed out.

With the aid of those separable solutions eigenmotions have been

determined which are required to satisfy certain incomplete boundary

data without prescribed initial values. For given boundary and

initial data a discrete or continuous superposition of eigenmotions

is necessary. Because of the complicated nature of this fitting

procedure the introduction of integral transforms suggests itself.

They can be utilized because separable solutions exist.

In this paper the integral transform technique is applied to

describe decaying straight and coaxial discontinuity lines as well

as the obliteration of local disturbances in a laminar fluid flow.

The analysis is restricted to plane motions so that use can be made

of the stream function *. Hence, Stokes' slow-motion equations are

reduced to the single fourth order partial differential equation

(A - 3)& 0 (1)
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where A is the Laplacian operator and t the product of time and

constant kinematic viscosity. Numerical results are obtained for

selected examples which demonstrate graphically the sequence of

decay.

It may be mentioned that under certain boundary and regularity

conditions the solutions obtained can be used to derive integrals

of the quasi-linear Navier-Stokes equations in an exact linear

manner by an iterative procedure. This has been shown in [i, 2, 3]

for various flow problems.

2. Decay of a Straight Discontinuity Line in an Infinite Region

A straight discontinuity line may be generated by two uniform

parallel flows of opposite direction at t = 0 and may be located

at the axis y = 0 in a Cartesian coordinate system (x, y). (Fig. 1).

In addition, a disturbance along the discontinuity line is super-

posed which may be of periodic or aperiodic nature expressed by a

Fourier series or Fourier integral, respectively. Hence, a slow-

motion solution of Stokes' equation (1) in Cartesian coordinates

*xxxx + 2*xxyy yy = (=xx + *yy)t (2)

may be specified by the following initial and boundary conditions.

The initial state is described by the basic flow

*B (x, y, 0) = Aly , (A9 Ž0) (3)
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and the disturbance

6(y) Z A(n)e

*(x, y, 0) = (4)
+00

6(y) I A(n)einkdn

The discrete or continuous function A(n) is assumed to yield con-

vergence of the series or integral, respectively. Furthermore,

A(-n) = A(n), where A is the conjugate complex value of A. The

symbol 6(y) denotes Dirac's delta function. The boundary conditions

for t > 0 and - x 5 x + are

±C:lim As(5Y 11-,17 --•" T As (*B) y +-A ,(5

S=0 , y = 0 .(6)

In addition to the conditions (5) and (6) it is required that

and * have a sufficiently monotonic behavior for large values of y.

For the x-direction it is assumed that *8 and I are representable in

the forms

* 8 (x,y,t) 0 S (y, t) (7)

'+y

SS(y, t, n)einx
n=-3

*(x, y, t) -- (8)

SS(y, t, n)einxdn



with S(-n) = S(n). For the sake of simplicity it may be required

that the representations of ' by equation (8) are four times dif-

ferentiable in space and once in time under the summation or

integral symbol. At this point it may be mentioned that this

assumption restricts the manifold of solutions considerably. For

instance, if general boundary data were imposed at some lines

x = xo and x = x1 , it is easy to show through a finite Fourier

transformation of equation (2) that the equation (11) below for

S(y, t, n) must be augmented by appropriate inhomogeneous terms.

A detailed examination of this deficiency of separable solutions

will be made in a forthcoming paper by Schwiderski [4].

The initial and boundary data (3) through (8) form together

with equation (2) a well-set initial value problem. For the

basic flow (3), (5), and (7) the solution

"- ii s, !e, ds + e 4t(9

with the velocity components

us - (.OB)y =AB erf(2) , v 9  - (08)x 0 (10)

is well known in literature [5] and is set aside for the time

being. The remaining initial value problem for 4 can be solved

in the following way:
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Insertion of the expansions (8) in equation (2) yields for

S(y, t, n) the fourth order differential equation

yyy 2n 24 +s + n2 (n2 + I)S (n

By introducing the Laplace transform

"2 ,f 5(X2-n2) t.
1(y, X2- n2) I S(y, t, n)e dt (12)

0

one arrives for equation (11) at
2

n~ 2- - X n.~ 2 nS(y, 0, n) ,(13)

where the initial value S(y, 0, n) A(n)6(y). Equation (13) can

be integrated twice to yield the second order differential equation

X2 I'• A(n)6(y) + cnenY + dne-nY, n 0 04
-ava1 A(o)6(y) + coy + do n 0

The coefficients cn and dn are determined by the boundary condition

ý(±-, X2 - n2 ) = 0, which one derives from equations (6) and (12).

It follows cn = dn = 0.

An attempt to integrate equation (14) for the desired particular

integral would require a differentiation of equation (12) with

respect to y. in order to achieve the proper regularity at y = 0

for all t. Since the delta function is involved for t = 0, such

differentiation of equation (12) cannot be carried out under the

5



integral sign. This difficulty is avoided by applying to equation

(14) the Fourier transform
+CO

fn,f(P) = f ý(y, X2  n2)eiPydy (15)

Then, one obtains

SA(n)16)fn,X(P) = -x + p2 16

In [6, 71 the original function of fn,X(p) with respect to y is

tabulated and becomes

=A(n) e-lyl .(17)
2X

This again is the image function of S and can be inverted to

S = A(n)exp (n2t +?) (18)

Integral (18) belongs to the class of associated separable solu-

tions which have been found in [1] . Substitution of (18) in (4)

renders the solution of the initial value problem (2), (4), (6),

and (8)- 0-
+W - n't

2 E A(n)e (19a)
1 n=-

(x, y, t) = -e 4 t

JTtA(n)einx " n tdn (19b)

SoLution (19a) describes the decay of a periodic disturbance

which is confined at t = 0 to the single line y = 0 and which spreads

6



with advancing time into the fluid in form of a discrete spectrum

of vortical motions. Each mode n consists of 2n vortices in the interval

ifrom 0 to 2rr. For modes n > 0 the dissipation of the motions (19a) is

essentially governed by the exponential function exp(-n 2 t). Since its

damping coefficient is n2 , vortices of high order n decay faster than

those of low order n. Furthermore, those vortices with largest coef-

ficient A(n) dominate at the beginning and become visible as "secondary

vortices.' t  The 2n vortices of this dominating mode grow in their

spatial extent and die away as soon as they are overcome by vortices

of lower modes. This mechanism explains the observed occurrence

of small vortices of large number in the beginning of the decaying

process of a discontinuity line and their replacement by fewer vortices

at a later time (see the experiments by Weske and Rankin F8]).

The process described above may be illustrated by a series of

flow patterns at various times. In Figs. 2 through 13 computer

output is displayed for streamlines which differ from each other

by an equal amount. For convenience the Fourier coefficients A(n)

may be expressed by the amplitude Cn and the phase angle an such

io'n
that A(n) = Cne . In the first sequence of figures the motion

consists of the superposed modes n = I and n i 2. The ratio of

their amplitudes is C2 : 1 = 10 so that the four vortices of n = 2

dominate at the beginning (Fig. 2). Furthermore, the phase angles

7



of the two modes may differ by ¶7/4 . If time passes by, the second

vortex diminishes and its two neighboring vortices join each other,

whereas the fourth vortex gains considerable strength (Figs. 3

through 6). The remaining two vortices, then, approach the state

which is represented by n = 1 (Fig. 7) and finally die away when

t tends to infinity. The same vortex configuration but with equal

phase angles (C2 : C, = 10, ci - % = 0) dissolves in a symmetric

way by supporting and suppressing two adjacent vortices each (Figs.

8 and 9). In a third sequence of figures a disturbance of mode

n = 2 is superposed on the basic flow (9) with C2 : As = 5 4 F- and

va= ¶7/2 . Fig. 10 shows the flow field in an early stage. With

progressing time those vortices are weakened which have flow direc-

tions opposite to the main stream (Fig. 11). They finally vanish

(Fig. 12), and the remaining two vortices are gradually absorbed by

the basic motion (Fig. 13).

From 'solution (19a) one can derive the criterion for the

generation of any secondary vortex which accompanies a dissipating

discontinuity line: There must exist at least one mode n / 0 with

nonvanishing A(n) which is sufficiently strong in comparison with

A(o) and As.

It may be noted that the solution (19a) exhibits the same decay-

ing mechanism as a complete solution of the Navier-Stokes equations.
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As was shown in El] for the similar case of Lamb's eigenmotions

(see section 4), the solutions of Stokes' and Navier-Stokes' equa-

tions approach each other during the final phase of decay and

become equal if n = 0 prevails.

The decay of an aperiodic disturbance may be illustrated by

the example

+M

A(n) = 1, f einXdn = 2Tr6 (x) o (20)

Then, the evaluation of the Fourier integral in (19b) yields the

solution

¶ ~exp -1(X2 + Y2) .(21)

Equation (21) describes the decay of a single vortex, where the

stream function * depends only on the radial distance r - (x2 + y2)2

from the center of the disturbance. This leads to the study of

disturbances in a polar coordinate system, which will be the

subject of the next section.

3. Decay of a Coaxial Discontinuity Line in an Infinite Region

In literature the solution of a decaying coaxial discontinuity

line seems not to be known which is produced by a jump in the

angular velocity of a fluid rotating like a solid body. This

problem corresponds to that of equation (3) for two parallel flows

of opposite direction and is not considered here. Rather the

9



investigation is focused on disturbances as in the previous section.

Different from equation (4) univalent disturbances of a coaxial dis-

continuity line can only be of periodic nature. Therefore, if r a

designates the location of the singular line, the disturbance is

assumed to be of the general form

*(r, cp, 0) = 6(r - a) EAncos(nyp+ n) o (22)

-n=o

For all t > 0, the disturbance shall vanish at r * =, that is

r=c * =0, (23)

The solution can be sought as

*4r, cp, t) = Z Gn(r, t)cos(np + an) , (24)

n=o -

which reduces Stokes' slow-motion equation (1) in polar coordinates

(r, cp) to

+ + 1 •_ _= 0 (25)B r Br r 2 Xar r ar r2 a

(see [1]). Introducing the Laplace transform

nr X) = f Gn~r, t)ek' 2 tdt (26)
0

one -arrives at

(27)
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where G (r, 0) = An8(r - a). Double integration of (27) yields

the second order differential equation
i n + n-n

-An6(r-a) + cr n n . 0

_X2 (28)r •r r / n-
rb r-A+6(r-a) + colog r + do, n =0

The boundary data (23) and the regularity condition at r = 0

require en = dn = 0 for a > 0. In order to integrate equation (28)

the Hankel transform of order n must be applied,

CO

hn,X(p) = / n •n(r)Jn(rp)/ dr, p > 0 , (29)
0

where Jn is the nth order Bessel function. This transformation

leads to

(p3 + X2 )hA An 6(r - a)Jn(rp)/rp dr (30)

or by evaluating the integral gn the right to

in A na2  Jn(ap)] a > 0 (31)

hn, x p 2+ x2½ A P

This function is readily inverted with respect to t and yields

H (p) = An aýp Jn(ap)e-p 2 . (32)nn n

According to [6, Vol. II, p. 51] the original function of Hn(P) is

G n(r,_t) i AnaIn (. ar)exp( r@+ a.2  (33)
2t r t)t 11



with In as nth order modified Bessel function of first kind. Hence,

*(rcpt) = (... r 2 +a- AnIn(ar)cos(ncp + on) a > 0 (34)~2 -°.. 2t)

Since the asymptotic behavior of In (2t) is independ-

ent of n, the initial state (22) and the boundary conditions (23)

can easily be verified. The motion which is represented by the

integral (34) corresponds to that of (19a) for a straight discontinuity

line. Therefore, its description is here omitted.

It may be mentioned that the special case n = 0 of the integral

(34) appears in [9] as the vorticity w of a decaying discontinuity

line. Since this solution fulfills the initial condition

w(r, c0, 0) = 8(r - a), the discontinuity line considered in [9] is of

the forin

f or r Ž a

u(r, '*cp, 0) _= 0, v(r, cp, 0) 0 o=

where wr = (rv)r .

A slightly different situation arises for a = 0 if the coaxial

discontinuity line degenerates to a local disturbance. Then, the

integral to the right of equation (30) is zero. However, if one

changes the coefficients in (22) from An to Ant"i-n one arrives at

the image function

h = A i_ 2 2 (
n,X n! n pn +

12



whereby the coefficient dn in equation (28) must vanish in order

to obtain a finite expression for hnX. According to [6, Vol. II,

p. 63] the inversion of (35) with respect to r results in

1= An 2 _nnKn (Xr) , (36)•n =n!

where Kn is the nth order modified Bessel function of second kind.

Finally, the inverted function of (36) with respect to t is

r 
2

Gn(r,t) An 2-n rn -4t.--

( 2 t)n+

(see [7, p. 128]). Formally, the integral (37) can be obtained from

(33) if one replaces An by Ana-1'n and determines the limit for

a - 0.

The integral (37) belongs to the class of associated separable

solutions which have been constructed and discussed in [1]. They

are interpreted as "explosive rotations." The special case n = 0

may be compared with equation (21). It follows that the initial

conditions *(x, y, 0) = 2rT6(x)6(y) and *(r, y, 0) - 1 6(r) are
r

equivalent. Indeed, they lead to the same solution.

4. Decay of Vortices in an Infinitely Long Cylinder of Finite Radius

The sequence of decaying vortices from higher modes downward to

lower ones, which have been described in section 2 for a straight

discontinuity line in an infinite flow region, shall now be demon-

strated by means of a vortex configuration in a finite circle,
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since this process has much resemblance to the phenomenon observed

by Weske and Rankin [8]. The vortices at t = 0 may be considered

as an intermediate state of a dissipating discontinuity line. As

was pointed out in [1] such a decay can be described by Lamb's

eigenfunctions

•mn Amcos(ncp + amn)[jn(Xmnr)-Jn(Xnn)rn]exp(-_n t) (38)

Jn+i (Xmn) = 0 n = 0, 1, 2 ... , m= 1, 2, 3, ... (39)

where the second equation determines the eigenvalues Xmn, and where

the radius of the cylinder is unity.

For numerical calculations a vortex ensemble has been selected

that consists of the three modes m = 1; n = 2, 3, 4. They represent

4, 6, and 8 vortices each. The amplitudes are arranged to have the

ratios A4 :AS:A2 = 10,000:1000:1 so that the mode n 4 dominates at

t = 0 over the other two (Fig. 14), and so that n 3 prevails over

n = 2 at a later time. The phase angles are zero. In order to

exhibit the essential features in the decaying process the follow-

ing steps are selected: At t = 0.11 (Fig. 15) the flow field in

the lower half of the cylinder has weakened in such a way that the

vortex which was near the 1800 mark in Fig. 14, does not appear any

more, and that the two neighboring vortices are about to join. The

latter incidence happens at t = 0.13 (Fig. 16). Six vortices are

now visible and regroup until an almost symmetric configuration

(that is the prevailing mode n = 3) is reached at t = 0.25 (Fig. 17).

14



Then, the same process repeats itself and ends with four dominating

vortices (Figs. 18 through 21) which dissipate slowly when t - - .

The asymmetric decay is owing to the property of the trigonometric

function and can be observed in the photographs by Weske and Rankin

[8].

It may be mentioned that the period of time from one dominating

mode to the other can be minimized by selecting optimal values

for the amplitudes and phase angles. This time interval increases

with lower modes. For the example above the ratio of the time

intervals, which are required to expose the vortices of modes n = 3

and 2 respectively, is 1:2.2. This compares favorably with Weske

and Rankin's observation of 1:2.5 £101
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a radius of the coaxial discontinuity
line

A(n) Fourier coefficient

In modified nth order Bessel Function
of first kind

in nth order Bessel function of first
kind

Kn modified nth order Bessel function
of second kind

(r, cp) polar coordinate system

t product of time and kinematic
viscosity

(u, v) velocity corresponding to (x, y)
or (r, cp)

(X, y) Cartesian coordinate system

Oln phase angle

8 Dirac's delta function

eigenvalues

* stream function

w vorticity
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Fig. 1: sketch of a velocity profile with discontinuity line
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Fig. 14: Streamlines of decaying vortices in a circular region.
A4 : A3 : A2 = 10,000 : 1000 : 1; t = 0
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Fig. 15: Streamlines of decaying vortices in a circular region.
A4 : A3 A2 = 10,000 1000 1; t = 0.11.
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Fig. 16: Streamlines of decaying vortices in a circular region.

A4 : A3 : A 2 = 10 ,000 : 1000 : 1; t = 0.13 o
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Fig. 17: Streamlines of decaying vortices in a circular region.

A4 A3 : A2 = 10,000 1000 : 1; t = 0.25
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Fig. 18: Streamlines of decaying vortices in a circular region.
A4 As A2 =10,000 1000 1; t =0.35
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Fig. 19: Streamlines of decaying vortices mna circular region.
A4 : As A2 = 10,000,: 1000 :1; t = 0.39
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